Leukemia - Acute Myeloid - AML: Subtypes

Approved by the Cancer.Net Editorial Board, 06/2017

ON THIS PAGE: You will learn about how doctors describe AML. This is called the subtype. Use the menu to see other pages.

There are different ways to classify the subtypes of AML. Although all subtypes cause decreases in normal blood cell levels, different types of AML are associated with specific symptoms and problems. In addition, each subtype can behave differently after treatment. 

Morphology

AML is first described by its morphology, or what the cancerous cells look like under the microscope. AML is classified by the type of normal, immature white blood cell it most closely resembles.  

Most people with AML have a subtype called myeloid leukemia, which means the cancer is in the cells that normally produce neutrophils. Other patients have a type of AML called monoblastic or monocytic leukemia. In monocytic leukemia, the cells look like white blood cells called monocytes. Leukemia cells can also be a mixture of myeloblastic and monocytic cells.

Sometimes AML seems to come from cells that produce red blood cells, called erythroid, or platelets, called megakaryocytic.

Acute promyelocytic leukemia (APL) is a unique subtype of AML where the cancer cell stops maturing when the cell is at a stage called the promyelocyte or progranulocyte stage. APL is associated with a translocation between chromosomes 15 and 17 [t(15;17)].

The classification system from the World Health Organization (WHO) includes these major groups:

  • AML with recurrent genetic abnormalities, meaning with specific chromosomal changes
  • AML with multilineage dysplasia, or abnormalities in how the blood cells look
  • AML, related to therapy that is damaging to cells, also called therapy-related myeloid neoplasm
  • AML that is not otherwise categorized
  • Myeloid sarcoma
  • Myeloid proliferations related to Down Syndrome
  • Undifferentiated or biphenotypic acute leukemias

The French-American-British (FAB) classification is an older system for describing AML, but it is still commonly used and is listed below for reference. 

  • M0: Myeloblastic without differentiation
  • M1: Myeloblastic with little or no maturation
  • M2: Myeloblastic with maturation
  • M3: Promyelocytic
  • M4: Myelomonocytic
  • M4eo: Myelomonocytic with eosinophils
  • M5a: Monocytic without differentiation (monoblastic) 
  • M5b: Monocytic with differentiation
  • M6: Erythroleukemic
  • M7: Megakaryocytic

Cytogenetics

AML is also classified by the cytogenetic, or chromosome, changes found in the leukemia cells. Certain chromosomal changes are closely matched with the morphology of the AML cells. More importantly, the chromosomal changes help doctors determine the best treatment options because these changes can sometimes predict how well intensive treatment will work. Chromosomal changes are commonly grouped according to the likelihood that treatment will work against the subtype of AML.

All chromosomes are numbered from 1 to 22. And, sex chromosomes are called “X” or “Y.” The letters “p” and “q” refer to the “arms” or specific areas of the chromosome. Some of the types of genetic changes found in AML include:

  • A translocation, which means that a chromosome breaks off and reattaches to another chromosome
  • Extra copies of a chromosome
  • A deletion of a chromosome

Some of the most common chromosomal changes are grouped as follows:

  • Favorable. Chromosomal changes associated with more successful treatment include abnormalities of chromosome 16 at bands p13 and q22 [t(16;16)(p13;q22), inv(16)(p13q22)] and a translocation between chromosomes 8 and 21 [t(8;21)].

  • Intermediate. Changes associated with a less favorable prognosis include normal chromosomes, where no changes are found and a translocation between chromosomes 9 and 11 [t(9;11)]. Many other subtypes are considered part of this group, particularly those with 1 or more specific molecular changes. Sometimes, extra copies of chromosome 8 or trisomy 8 may be classified as intermediate risk over unfavorable (see below).

  • Unfavorable. Examples of chromosomal changes that are associated with less successful treatment or with a low chance of curing the AML include extra copies of chromosomes 8 or 13 [for example, trisomy 8 (+8)], deletion of all or part of chromosomes 5 or 7, complex changes on many chromosomes, and changes to chromosome 3 at band q26.

In general, the favorable changes occur more commonly in younger patients, while the unfavorable changes are more common in people older than 60. How well treatment works still varies widely in each of these groups. Treatment is successful in the long term for 50% to 60% of patients younger than 60 with AML that is classified as favorable and for less than 10% of patients younger than 60 with AML that is classified as unfavorable. Prognosis in patients older than 60 years of age is significantly worse. How well treatment works also depends on other factors, including the number of white blood cells. It is not possible to predict exactly the likelihood of successful treatment for a person with AML.

Molecular changes

Testing for molecular changes at diagnosis helps determine a patient’s treatment options. For example, patients with changes in the NPM1 or CEBPalpha genes have a better long-term outcome, while chemotherapy (see the Treatment Options section) does not work as well for patients with changes in the FLT3 gene. Other genetic changes linked to prognosis for people with AML include:

  • RUNX1
  • ASX11
  • P53
  • IDH1 and IDH2

Recurrent AML

Recurrent or relapsed AML is cancer that has come back after treatment. If the AML does return, there will be another round of tests to learn about the extent of the recurrence. These tests and scans are often similar to those done at the time of the original diagnosis.

Information about the subtype will help the doctor recommend a specific treatment plan. The next section in this guide is Treatment Options. You may use the menu to choose a different section to read in this guide.